EXAM I, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that $(Z,+)$ is cyclic. Prove that $F=(Z,+) \times(Z,+)$ is not a cyclic (Some of you have the right idea but ...)
Proof. Deny. Then $F=<(a, b)>$ for some $a, b \in Z$. It is clear that $a \neq 0$, and $b \neq 0$. Since $(1,0) \in F$, there must exist $k \in Z$ such that $(1,0)=(a, b)^{k}=(a k, b k)$. Hence $b k=0$ and $a k=1$. Since $b k=0$ and $b \neq 0$, we conclude $k=0$. But $(a, b)^{0}=(0,0) \neq(1,0)$. A contradiction. Thus F is not cyclic.
(ii) Give me an example of an abelian group with 16 elements, say D, such that D has a subgroup H with exactly 8 elements, but D has no elements of order 8 .
Solution: Let $D=\left(Z_{4},+\right) \times\left(Z_{4},+\right)$. We know that $|(a, b)|=L C M[|a|,|b|]$. Hence each element in \mathbf{D} is of order 1,2 , or 4. Now $H=\{0,2\}$ is a subgroup of Z_{4}. Thus $Z_{4} \times H$ is a subgroup of D with 8 elements.
(iii) Let D be an abelian group such that D has a subgroup H with 10 elements. Given that D has an element a of order 2 where $a \notin H$. Prove that D has a subgroup of order 20 .
Proof. Let $F=H \cup a * H$. We know $H \cap a * H=\emptyset$ and $|F|=20$. Hence we show that F is closed. Let $x, y \in F$. Then $x=a^{i} * h_{1}, y=a^{k} * h_{2}$ where $0 \leq i, k \leq 2, h_{1}, h_{2} \in H$. Thus $x * y=a^{i+k(\bmod 2)} h_{1} h_{2} \in F$.
(iv) We know that if a, b are elements of a group $(D, *)$ such that $a * b=b * a$ and $g c d(|a|,|b|)=1$, then $|a * b|=|a||b|$. Give me an example of a group D that has two elements, say a, b, such that $\operatorname{gcd}(|a|,|b|)=1$ but $|a * b| \neq|a||b|$.
Solution: Let $a=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), b=\left(\begin{array}{ll}2 & 3\end{array}\right) \in S_{3}$. Then $|a|=3$ and $|b|=2$. $a o b=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Thus $|a o b|=2$, where $|a||b|=6$
(v) Let $(D, *)$ be a group and $a, b \in D$ such that $a * b=b * a$. Prove that $a^{-1} * b^{-1}=b^{-1} * a^{-1}$.

Proof. Since $a * b=b * a$, we have $(a * b)^{-1}=(b * a)^{-1}$. We know that $(a * b)^{-1}=b^{-1} * a^{-1}$ and $(b * a)^{-1}=a^{-1} * b^{-1}$. Thus $a^{-1} * b^{-1}=b^{-1} * a^{-1}$.
(vi) Let $(D, *)$ be a group such that $a^{2}=e$ for every $a \in D$. Prove that D is an abelian group.

Proof. Since $a^{2}=e$ for every $a \in D$, we conclude that $a=a^{-1}$ for every $a \in D$. Now let $x, y \in D$. Since $x * y \in D$, we have $(x * y)^{2}=(x * y) *(x * y)=e$. Thus $x * y=y^{-1} * x^{-1}=y * x$ (since $y^{-1}=y$ and $x^{-1}=x$
(vii) ((All of you-2) got it right just straightforward class notes, see your notes)

Is $U(10) \times\left(Z_{7},+\right)$ cyclic? Explain briefly.
b. Is $U(15) \times\left(Z_{9},+\right)$ cyclic? Explain briefly.
c. Let $F=\left(Z_{12},+\right)$ and $H=\{0,3,6,9\}$. Find all left cosets of H
d. Let $V=\left(\begin{array}{lll}1 & 3 & 4\end{array}\right) o\left(\begin{array}{ll}2 & 5\end{array}\right)$ Find $|v|$
e. Let $V=\left(\begin{array}{ll}1 & 3\end{array}\right) o(2345)$. Find $|v|$.

\mathbb{H} Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

